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SOME APPLIED RESE CA CONCERNS

.
USING .MULTtPI, LINEAR REGRESSION AN ysis-'

ti

Introduction

%Y.

4

During the last fifte n year , multip linear regres-
,

sion, t4e general c e of/the le -st squa -solution, has

developed.iptotaZg4 ateiresear h. techni e for the

social sciepces. With tliis
*
inc ease in t age If. multiple

eloped t opposing view

lnets and its appropriate

ness, Th\ arguments of both Iroucs, th advocates "and the

....'critics of multiple linear repression, /an be found in the

linear regression,. there have ti

points with regard to its usef

fecent literature. The advolates of m 4iple linear
*4

4 A
I i

regression state and defend d'ad17ant ges Rcovided to thet

./ .

researcher who uses multipl inear r gression. The

. critics s,tate a variety of P.mi ation and concerns with'
. _

'reipect to utilizinulti le linear,regression as a ,.

research technique.
I

The purpose of this iciaper it tet examine the advantages
7

(4
claited by the advocates ci:If multiple linear regression and

11,

some df the concerns expressed by *ts critics. More than
4

anything else what the authors of this paper have attempt-

ed to proVide is an ovtall refer nce on how a researcher

N can apply multiple line4r,reqress on in order to utilize

11."4/....
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the d1 antages thatit has to o fer. Also, the authors

hay tempted tosorovidea ber of meaningful and

prat cal methods by which researchers can Seal with the

'cit) rns that are .often cjt= by the critics of multiple

1. r regression, which are correlation/causation; upward

qt2, and multicollinearity.

2

Advantages of Using Multiple Linear' Regression

While a great-deal of moneyand time is currently

ing directed toward resear,ch, there appears to bea

eneral lack of acceptance of the relevance of research

findings. One reason for the present skepticism has been

that the statistical models used by researchers have IP ...

frequently been unrelated or tanifentially related to the,,

research question of interest. There are a variety of

seasons for this .lack of agreement betyeen the research

question of interest and the statistical model.

One such reason is that courses that'teach research-
.

method's generally emphasize.date:analysis., rather than

Practicing appropriate methods and procedures for asking

and developing research questions: These courses do not

adequately deve/op the skills of evaluating the research
.

4

question and the statistical.model that are most capableA
of reflecting,the.research question..

Quite often,-,a student coming out of these courses
t . 4

tends to select a familiar,4"canned", standard statistic 1,

design, or package (cookbook approach) such as a 2 'x 3, or
-

ti
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2 x 2 x3, because he has not been taught to develop his

'q,Ip-models to reflect their research question. Therefore,

he uses these, standard models which dictate the.question

being investigated. Sometimes a researcher aware that

these models .do not completely repreSentipis treresearch

question. In addition, a.significant F-value,on a factori-

aa design is often difficult to interpret. When this.
r r

happens,*he may then make inferential jumps from his data.

3

These inferences may well be inappropriate.

Therefore, in many cases the researcher is unaware that his

models are not really reflective of his research quest4onsr

and quiteoften,.the unsophisticated researcher allows the

'statistical model to totally dictate h,is iesearch question.

Under these conditions, we find research-that is techni-

cally. correct but is not relevant because it is. not

relatbd In a pragmatic way to a specific, problem.. (Newman,

et ar., 1976)
) ,

,

1. One advantage of using regression procedures is

that cher finds. it necessary to, first. state his

hypothesis an tien write the regreSsion model needed to .

test that hypOtheSis. Thus, every test of significance is

directly testing a.specifia question posed by the retearch-.
, 4

er. Also, regression is'more flexible in allowing the.

researchei to write -the models that specifically, reflect

his queStion of ihterest. 'The advantages provided by this

flexibility can, be seen ih research questions that deal

with. interaction variables, ,directional and partial



interaction covariance, trend analysis,'and questions that

encounter the problem of dAproportionality...

2. In dealing with interaction variables, a research-
.'

er with.'regression can ask interaction questions between

.catagorioalvariables, between catagorical and conivuous

variables Or between continuous variables. Since

reressidn can deal with catagorical and continuous vari-.

ables, it is more flexible in its ability to reflect real-

world problems than other statistical procedures. With

regression, there is na'need to catagorize variables that

are continuous in,necure as required, for example, by

,traditional ANOVA; therefore,*.one would not lose, degrees
4

of freedom .and power. (McNeil, Kelly/ McNeil, 1975,

Kerlinger, 1973)).\

An example of hoa hypothesis which involl.res.the

group Membership o4d be tested is listed below: "
Example 1:

Yl = posttest score

Xi = control group ,

experimental group

X3 = I.Q. score /

X4 = Xi * (I.O. scores for tie, students the
control group)

X5= X2 *1X3 scores for the students in the
. experimerital gFoUp)

.E1,2 = the errortf6r-,each.subject

U = the unit vector
/

aos . ., ay = partial regression coefficients"

./

6
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. .RF
:
='varience in Y

1 accounted for by the full model
.4.

Yik

RR = variance in Y
1
accounted'for.by the restricted

model
-

.

. -,
.

.

dfn = the number of _linearly independent vectors .n tie
"Mull model minus thelUmber'of,Iinearly dependent1 ..

"vectors in therestricted model. ',
.

1 %

N=.fhe number gf subjects minus the number of .

linearly independent vectors in the full model. \, A
H
1 =the differences between the prest scores

Model 1

of the control group and the perimental group
are not constant across the range of I.Q. scores.

= a0U + a1X1/+ a2X2 1a4X4 + a5X5 + El

41V 4

Restrictions: a4 = a5= a3.

Model 2 Yl =-acp + a1X1 + a2X2 + a3)6 + E2

By telgtinq Model 1 against Model '2, titt is, by determin-

)ing if the F-value calculated by:

RR)/df
F =

RO/ scud

is significant, the researcher could determine if there'

is a significant interaction between the cbntinuous

va iableof I.Q. scores- and the categorical variableq.

(o the groups (McNeil, et. al d, 1975).

3: Regression also allows the researcher to test-
, '

diredtiopil and partial interaction questions (McNeil,

at al 1975). For example, the researcher may hypothe-

size that,I.Q. scores have a greater impact on the '

#04
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1
posttest-scores'of the subjects ;in the experimental group.

..!

than it does ,for the caOtrol group subjects. The

researcher could obtain.the.gnswer to his resear ch question,.

bytesting Model 1 against:Model 2,(using the same variab-.
- ,. ,

les and models listed prAiously). Ifa significint
e, .

F-yalue was obtained and ita5.>.a4, the research could,
. ,

conclude
rrthat I.Q. scores had a greater impact o.post-

r

test scores for'the subjects -offtexperithental group than

'for the subjects of the control group.-
.

4

e>,

V

4h

Regression also allows the research to test inter-
,

action questions that the researc er would tend not to

.ask if he was..not familiar regression procedure's,-

that is, partial interaction questions'(McNeil, at
1975). For example, a researcher might be interested in

testing the following,ypohesis (Fraas, 1917):

Example 2:
.1. .

.
-

'H
1
= Previous economic training has a gteater impact

r

on the-everagecOsaestScoes of the students, in

the two experimental grodps than for_students in

the.two control groups. (Note: More than_iwo

groups 'could be used. )

Y
1 = posttest scores

X
1 = previous economic training (1 if yes 6 'other-

wise)'
X =' no previous economic training. (1 df yes; 0 other-',

- wise)
X
3
= Control Group (1 if yes; 0 otherwise) .0

1C4 = Experimental Group I (1 if ,yes; 0 otherwise)

4111%1441
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1.

;X5= Control Group'II..(I.if yes; 0 otherwise)

X6 = Experithental Group.II (1 if .yes; 0 dthercAtise);

X7 = Xi * XI Students iri-Control Group I with.,
'd previous economic training (1 .if yes; 0.0 otherwise) .

- .

. ,/
XQ = X/ * XA Students . in Experimental Group,I with I*.

, - previous economic training (1 if yes; f,

. .0 otherwise)
.

.

'X,
y

X.1., * k. Stuents in Control Group II with
ett, 5

previous,economid-training Tlif yes;
O otherwise) ;1..

*-X
6 Students in Experimental Group II with

previous economic training (1 if yes;
O otherwise)

X
11

= X
2

* 5(
3 Studentsin:Control Group I with no

prekrious. economic training (1 if.yes;
V 0 otherwise)

. 7
.

.

X
12

= X
2

*'X
4 .Student,in Experimental Group I with no

previous economic training (1 ifyes;
O ptherwise)

. .

X13 = X2.* X5 Students in,Control Group II with no
previous economic-trting, (1 i..f yes;

.

C O otherwkse)
.

,X14X =.X
2

* X
6 Students in. Experimental Group II with

no Rrevious.economic training, (1 if yes;
0 otherwise) ,

.

X
10
=X

X15 = x8 :I- x7

X
16

= X
9

- X
7

X
17

= X
10

+ X
7

X = X' + X18 11 7

;(19 rX12 X7

X20 = X/3 + X7

= X
14

-
7

Variables need to impose.the

restriction-required to test

the hypotheses.

9

4
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Model 1
1°1 = a0U+ a1X1 + aeX8 a9)Z9 + aioxid +

r

X +aX +a); + E.11 11 12 12 4 .13 13 14 14

9 -8
+ -10d

. Restrictions: -
7-

+ a ) - (a

(a12 a1,4

1 4
-14odel.2 = a0U +aX +a X +aX +a)C +15 15 16 16 17 17 18 18

a
19

X
19

+ a20 +a21X
2 1

+ E

.If 'the researcher finds a-significdnt'F-value and
......

. .-

.
..

the value:Of the left. side of,tHe-iestriction is greater

than the value of the right side of the res# trigtioh.v the
.

researpher would conclude that the data SApparts the

hypothesis. Without the iploWledge,of regression, the

xeSearcher gay not even ask such a question,-let alone

be able !to test it, even though the question may be_of

8'

greatimportance to his study.

4. A fourth advantage of regression,is that by

using the multipl,p linear regression prodedureS. questfpns
* a -

that involve covariance are easier to test-and interpret

(Kerlinger, 1973; Kerlinger and Pedhauzer.1973'; Ward and

'Jennings, 1973; Williams , 1974; Draper,and Smith, 1966;

Newman, et al., 1976; McNeil,/976). :This point can be

demonstrated by the.. procedure listed below:

to

1

1

.
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. more interested in functional relationships thaA, mean
-

differences. There is generally 'a continuous varitble that/

1 /

41 %A,

Example 3:

Hypothesis I: 'The pcitttest scores fc r the,experimental
sroup are significantly 'higher than the
posttsilt scores for the control group over

9

and above the differences due to I.Q.
. scores.' (The variables:listed in Example,1
are also used for this example)

Model 3
y

1
..a u + a

1
x
1
+,a

2
X 2.: + a 3X3 +`t

al .= a2Restriction_:

. Model 4
+ E,

If Model 3 is found to be significantly differapt 'from

Model 4, this would indicate that these is a si/nificant

'difference between the groups:, Also, if` a1 < a2,. this
6

would suggest that the Experimental Group had higher

posttest *ores than did-the Control Grq.p (at some

specificC7<2 level).

5. Another, advantage of regression is that' it facili-'

tates the calculation and difterpretat ion of trends (func-

tional reldtionships).. When the- research question inter-
.

est is one of trendg or functional relationships, one often

finds the,use of inappropriate statistic)ilmoddis.which
- 4 .

accuratelyaccurately reflect'the research,questions '(Newman,

1974).

'When-researching develootental questions, one is often

"11
45
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.... /-_, ..is Of interest,ssucb agitime, age; popuLation sies,-I.Q-.
...4 i

,, ,', g..

When trdit.iiorka1:4na;t1vis of varianc.is employed; for ,-
. -;11--:1,.... 4:i .-,.' - '-"' .- ,

example, 'contindeusveriables are forged into qategoriza7.
\" _

tAns. This causes the researcher to 'lose degrees-Of
*! .

. .

J ' 'freedom, erid there is 1a poteriklal loss, of information.

This loss, is contingent uPory'how repretentative the .'
,

, .,

categories are, of-:the ,inflections in the naturally occuring
-.6, .4 ,

t,

continuous vail.able: , )6

/
Since continuo , ariables are'frequentiv artifidally

... --...
. .

.

categoi-ized,. the.analvip prodliced:bv such 'a procedure, may,
,

. 4
-I -- 4

g
,4 1 . .

not reallx.reflect the researcher"s question or interest.
. ,-

.

The most efficient method for' writing statistical models
.

that renect'trend,or curve fitting questions,
.

general case of the least sauares,solution, linear model,
r

. ,
(Multiple Linear Regression Procedures', 'Newman (1974),

. N
McNeil, Kelly, McNeiyr1975), Draper 54 Smith (1966), Kelly,

-.

Newman, And'McNeil.(197 ) ThiS.procedbre alloWS one. to
.

,
. , <NA .

write linear models, which specifically-ref,lect the
,.....4

1 .

research question., 4
4 ,

1.'

-

A. .
.1

#

Linear Regresion is Air excellent statistical tool for
1' , ,

-
looping at a population *6n6 or goMparing,multiPle trends

'')

V .r . '
over time (Newman (1974) , Erying, (1975)P. -'

.

.

For Examlole, in,?igurd'1, a graph is presen-t!ed that
peflects the researcher's interest,in learning.if there- are

significant differences in trends (in thiscase Slope

- differences) between. subjects who reteived,a Developmental

Reading rogrrrif (x,).and students who :'did not receive:the,
.a

'9 ,

'
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Progiam .(X,) ,' as it relates to their cumulative

Exampfe 4.:

.Hvbothesis I: There are significant differences in slopes-
: for X,, and X-2 in predicting the student's
cumulAtive G.P.A.

needed tip test this pothes' re a

\
adt + a2X2 a3X3 + S

4
X
4

+
.

'The models

f011owse:

Model r' yi =

Restriction: a 3- = a4

,
Model 2 Y1 =a u +

1
x
1

4

-
Y1

+ a2X2 +

cumulitive G

X = l"if student

lekk student
2

X3 =

X
4

=

-XS

nTAlber of
j ett4 who

number o k
jests who
0 otherwi

a
5
X5 + E

.P.A. .

had program,

did not have

1

0 .otherwise

4.

peo , -0 other-

the quarter hours for the.
had the program, 0 otherwi

the quarter hours for -Ole. sub-._
.did not have the progrard,
se

quarter hourg for all= X3 + X = number of
4 subjects

U = unit vector, 1 if subject
0 otherwise

a5. = partial regression

=' ,error Y -
1 2

4

°13

weight

us in the sari-Tie,
I
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FIGURE
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TREATMENTS AND CUMMULAT I VE G P. A FOR.- STUD ENTS
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-1.0
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I 1

1
I 1 1 I

#

12

' 20 40 '60. 80 .100 120 .140. 160 180

QUARTER HOURS
'

tg,

If Model 1 is found to be significantly different 'from"

Model 2, that is,-the F-valiue is significant, this would

indicate that there is a significant difference between

students who took the program and students whit did'not take.

-t e ogram in terms of their cumulative G.P.A.

wift also allow many other iquestions to be

askpd when dealing with trend analysis. Second,degreeor

third degree relationships (cdrvilinear relationships)

could be investigated. Alegression models couldbe'written

that would reflect such trends.

.

14 .
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*6. The applied statistician an4., researcher is

plagued with the problem of disproportional cell sizes in

factorial experimental designs. This may occur because of

mortality in the laboratory animals being usedjn

experiment; the( required number of subjects 'not available;,

someone who had agreed to take part in the experiment fails

to shoW "up; or \the data may resPresent the proportionality

that exists in the "real woad." ( ewman,Oriveczi1977)

When the researchers feel disproportionality is severe

enoughto be Of concern, there Are a variety of procedure*

.that he-can utilize toattempt to correct for the-potential

problems. However, beforgany 4 orrections are applied,

oie should be .sensitive to the unde-ilying assuxption that
14.

.

they are making about the population from which their 'data

is dtp.rn, and the investigator must also be very clear

about the research question he is,interksted in asking.

The following is a check list adopted from Newman and

Oravecz (1977), of the type of information that a research-
,

er should investigate before selecting a tethdd for correct-

ing for disproportionality:

a. know something about >he theoretical and/or.

empirical relationship between the variables being ,studied;
, /

b: know some of the descriptive data about the 4,

,

population one wishes to generalize 'to in relation to the

specific Variables being studied;

know the specific research question under investi-

gation if one degidei an adjustment for disproportionality

15

1
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is 'needed, then,

d. know the underlying ssuthptions andioimplications

for differbnt adiustmeniiirocedures, and'

e. kn'OT.4 the.consequences for using the telected

adjustment procedure .,n the interpretation and generalize-
.

tion of the data.

A detailed, disc ion of the undSt1 ing assumptions

and Oiavecz (1977).can be.found in thb articleby Newman
Y

^,1
There are a, variety of solut ns to the -un.edq N's

problem, which can be divided intotwo major ca.t gOries-7

approximate and exact.

Examples of approximate solutions are: randomly

eliminating data And runn-ingrthe analysis on justgroup

means, therefore, decreasing the number and power. A
....

researcher using' any o thepe solutions'is 4enerally aware
' . .

..m. .

of the limitations Ad..problems. w

l'.

What. may be more misleading are the exact.solutionS

which are all ..echnrtally correct but Ohich, like the mean,

Medln, and mode, are Answering different questions. The
...

.;,, / ,

three exact solutions, which are lifted belowi.are the'

full rank MAhod,'fitting constants method, and the

hierarchial lethod (NewthanAt Newman, 1975)..

) Example 5: -
1'

L A.' Solution_ l - Full Rank _Solution
.

A symboild'example ofthis:procedute is presented

idelow.for a two factorial design.

A

1-6
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Model 1

Model 2

Model 3

Model 4

.41.

Ykab 6

Ykab 6

Y
kab

Ykab is the
column

scoe
b.

11.

15

for subject k in row a and

6.=,-illthe grand )7

,13a = is the effect for row "a"

5b ' =is.thg. effect for column "b"
. ,

ab = is the interaction effect for, the rag "a".
and column "b"

e
kab is the' error, term for iach subject

b, . . . b
n

are 'partial regression coefficients

,

Adjustment foriplution 1
. '

Adjustment for A pain effects test Mode], 1 against

Model 2

Adjustment for B main effects test Model 1 ag'ainst

Model 3

.Adjustment for A*B effects. test Model 1 against

Model '4



B., Solution 2 - Fitting ConstantsMethod

The following-is a symbolir.represntation of this

solution:

Adjustment for Solution 2,

Model '4 Ykab = 6 + b
10

a + b
a b

+ E
kab "

47

i . 4

Model 5
Ykab 6 + 13I26b,-1-.kab

' 4% .

.

it

. .f.
y

, .

4' 'Model 6 .Y
ka b

' = + 11
13

a
a
+ E

kab
,

, .

.

Adjustlivnt ior.Amain effects test' Model 4 'against
.

,

: .

Model 5 . ,.*"
-,. .

`, '
- ,..

. , 00

Adjustment'fier B .main eff *cts test liodeL 4 against
' ,` .

/. 4 . ,

Model, 6 t

f"J

Adjustmat fotAB interaotion e ACts-test Model 4,

against Model 1

.ti111$.ams (1974)

- ,

Tbe following is a symbolic representation of this
!

Solution - Hieratchia r Method (Cohen (1968) ,

Adjustment for $ollition 3

Model 7 Ykab 6 blea-+ .ckab

4 ,

Model 8 = 6
k a 15 ' "kab

/
.1

Model 9 Y ekabkab 15 16

..#04

'is

011

4

.



a 17

Adjustmeht for A main Afects test Model 7 against

Model 8
I

,

A 4djtistment for B. effects test Model 9 against

Model V
.,

.

,.)
. .

.

Adjustment for Aa interaction test. Mode] r against.

,
....--- .

- t .

Model 9-,
4 %

f),

_
'Each of the :three leaat,square soldtions make differ--;

.

-,'ent assumptions aboutthe'meaningfufness and "usefulness"

of-the cprrelations between .til A main effect, B main
4.- 4

4 ,
effect, and' AB interaction., .

,,

' .

Nr :

. .

Solution, 1, 'for.exaqtle,' when testing' the',A. 'main
.

_
: ` 4.,

e%ffeCt,:asSu mes.the correlation between A and la and the'AB', . . .

,

. .
.

4

,

ins s of an accidental:nature,.,and therefore

should not be oniidered q4toCk7:et,,,a1., 1978). This
.

. - - .
.

.
-

. 'solution is most-likely to be preferea ;Theri 6e can assuAe
.

. .. . ,

,

tithe missing subjects prod;acing:disproportionality
.

1

were randbp. If one isunable o make this assupt'ion
: N

1 .

'then.it wotd*be -in-appropriate to 'use Solution 1,.(which,

4,

may be the case most. frequently): .... .;

.,v,i
..'

'Solution 2 assumes that there is no correla'tion
. . )

A 4re
.

tween they iA and B ftain,effects n,the population. There- ^-

v' ,/.1
, -

.

fore, the correlation between A and in the sample is. \

i . .

. 1

4

a functiop of disproportionality and not representative of
,

,the population. iution,2`ihen attempts to adjiist f r

this correlation)

However, 'Solution 2. assumes that the correlations

19
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between th; main' effects and the iqieractiont whic4're-'

cults from .the disproportionality, are not,kpuribuS and

.'are ciraracteristic of the population. Therefore, it does
t

not attempt to adjust for this correlation.

:If one cannot assume that the correlations between.

the `A and B main effects due to dispryortionality are

d-qe to chance, 'then solution 2 would be' an inappropriate
(.

correction.* 4

'Solution 3-reouires.:an,a priori ordering of tne
/

.importance of:eaCh variable; tt us assume thithe
4

a priori Ordering are: A main:effects, B main,,effects,

' AB interaction, respectivply, (Newman and OraVeci; 1917).

It'is important to dttrmirie,which'of thesgmethods

are reflecting the'question that we are interested in

answering. One can only do this by bping sensitive to

one's research question and,h1 being.aware of the differ-.

ent statistical. techniques whi are more .appropriate
f ,

--than other.S.
t

Methods'That Can'Be Utilized

To Deal With The,Concerns%Of

Correlation, Upward Bias 1444Values, And 'Multicollinearity

There are three concerns which have been expressed

by the critics of multiple linear regressibn that have

drawn a geat deal of attention. One concern expressedi

some critics is that causality cannot be,inferred from
.

studies that use-regression prooedures. Another concern

that hansgeen expressed, by some researcher is the
,

I 21)
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tendency for,'multiple correrations to,_be upward bias.

The third major concern, called multicollinearitye

problems produied by the non-orthogonality of the inde-

..Tendent '[Note:' One of the problems with
4

,,,lisproportionality,'a concept discussed in the 'prSceding

section bf this paper',' is that disproportionality,produces
0

correlation between its variables, i.e.:Aulticollinearity.]

e
It. is the purpose of this section of paper to

present a discussion of possible methods-that a researcher

''could use in order to deal with these.pioAems.

One of the concerns that has been eipresSed"by

he critics of multiple linear re,gresion is that one

.

canhot'infer causation if kegression or correlation is
0

used. This concern which ha'slogen expressed both f =ally and in
s

for*ally, can be found ins recent article entitled "Regression-
\

Analyses and .Education Production Function4: Can They ge

`,TruSted?" The authors Lyecke apd McGinn (1975) conclude

, that a_ researcher cannot appropriately infer causation

from regression techniques.

e. ,,,The statement by Lyefte arid McGinn (1975) i s1 correct.

HoweII-k, ausalion Cannot be inferted'from an tatistical

tool unless an appropriate research design is utilized.

If causation is to be inferred;, regression as a statistical

tool', as is the case for any other statistical tool, must
,

be used in relationship with some research design that

.can be found, example, in Stanley and Campbell (1969).
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To the extent that' ,this design has internal

validity, the -.researched can infer causal relationships
7

between the independent variables and dependent variables.

If a research design is 4c post'facto, where the

independent variable is not under the control of the

researchers; no matter what technique is used, one.cannot

infer causation. It is not technidaiNr"legitimate to

-(7-
infer causation when the design is ex post facto. Eveti

th6ugh a(variety of statistical techniques such as path

analysis as developed by Blalock (1962, 1964, 1970, and
,

1972) and more recently component analysis developed by

Mood (1971), have attempted to get at causal relation-.

ships ot,ex post facto data, through the manipulation of

regression techniques, one still cannot technically infer

P causation (Newman & Newman, !1975}. Newman and Newman'.

stated the following with'regard to'caudation and

component analysis:

4
. Since one of the major purposes for calcu-'
lating component analysis is to.attempt to
improve the explanation o,ex post facto .

research desighs,this can le one to mistaken- ,

ly believe that the unique v nce accounted
for by ap independent variabl ith a criterion
is of a causal' nature (p. 45). ,

In a s'

\
ilar fashion, Lee Wolfle (1977), states thy.

11"415!"inability a researcher who is using path analysis on

ex post'facto,data to infer causality as follows:

k Although path analysis is a method for con-
,

sidering cause,-neither it, nor any other meth-'
i od, can be used for inferring causality from

non-experimental data (p. 39)
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.It is,.therefore, not the use of multiple linear

regression that precludes the researcher from inferin

causal relationships between the'variables. it is t

lack of a true-aperimenta l designthat prevents the

110,1 researcher from making such inferences. 9ausatiOn'can

only-be inferred if a true experimental design was
,

utilizedi iiregardles of the statistical tools that were'

21

used tO analyse the data.

4 2. Many researchers mistakenly. relieve it is

Meaningful to include in the4 reports only that a

manipulation oan independent-variable was shown to have

a significant-effect upon a dependent Variable. The

magnitude Of this effeCt is not givensto the reader.

'f'l\e magnitude of this effect,'Which could be presented

by citing the R2 or n2 values, must be taken'into con-

sideration when a tesearcber is interpreting the practical

significance of experiment results (Byrne, 1974,

Cohen, 1969,-fredman, 1972).

2

Most researchers are aware that a Revalue tends to be

`bigher in the sample than in the population from which the

sample was drawn. This:shrinkage is due to the fact

that the regression weights are:calculated to maximizec

the prediction'Of the' criterion.- -The sampling error isti

capitalized on 4ten,calculating the regression weights,

so that the predictive power for'any one sample is

maximized. It should be noted, however,-that in an

article by Dalton (1977) it was suggested that this
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overestimation of R2 may not be too great in Many cases

and is really a good estimate of the population vane.
4

Dalton (1977) used -e--3a methods to compare

R2 JR2 after a shrinkage, formula has been applied, and
.

R2. The bias in R
2
was consistently positive and it

decreased as the sIkple size increased., HOwever,.Dalton

cdhcluded 'frdm his study that even,thoughtk2 and a)2 were

superior to R2 when m < 30,.'R2 showed little'bias in'large

samples: Therefore, this'Audymay:suggest thgt the

upward bias tendency for R2 values is not as prominent a'
_. . .

. . . .

. 9 - . .

;_- problem as once thought. Howdver, there was one short-

'Coming of'Daltion'i (1977) study and that is he only ex-:

&mined atthe three variable situation. This g4Aatly
-

litits the possible generalizablity,of the study.

There are four possible methods which can helvged

^to obtain a corrected R2 (R 2
). These methods are

7
entitled the-Wherry Method, McNamara Method, Lord Method,

and Cross-Validation Method. Uhl and Eisenberg (1970)

empirically investigated the accuracy of three of these

methods; Wherry's original formula (1931), McNemar's

modification (1962), and Lord's (1950) formula. These

'formulaseare:

R` 1 - (1
R2)'n2N

N-1
N-K

i2 R2) N-1'
N-9K-1

.

112 (i R2I N+K+1
' N-K-1

II 2 4

(Wherry),

(McNemar)

(Lord)
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where: R = the corrected estimate of tile m tiple
correlation

R = the' actual calculated multipke cdrrelatiori

K = the numb'er'of independent variables'

-N.7 the number of iRdependeqt obsetvations

-404 and Eisenberg found that even though Wherry's and

McNemar's (formula7 are the.most Commonly used, Lord's.

formula consistently gaye more accurate estimates for

the five different N' site's they investigated, = 50, 100,'

150; 250:325) and for the situations using two through..,_

thirteen predictor variables. .

A study conducted by Klein and Newman (1974) indi-
.

cated that when there ae 100 subjects for each

'variable all three formu.li produce the same estimates.)

When the ratio is less than that, Lord's formula is con

sistently more conservative, that is, it shrinks more.

Ad'the variables increase, there seems to be a tendency

for McNemar and Wherr tovroduce more similar results.
;"'

1sIn a discussion between Keith McNeil and Isadorg
Newman, the topic of the ratio between variables and sub-
jects was reviewed: McNeil stated that this ratio may n t
be equivalent forcontinuous variables and dichotomous
variables.' McNeil suggested that in order to establis
a 10:1 ratio for a continuous variable, one may have t
have ten subjects per "grouping," Of the variable, that is,
if'the value's of a continuous variable distribute them-
selves into approximately threp-distinct.groups, ten sub-
jects ar,e, needed for 'each group in order to retain a 10:1 .

ratio. This is probably a conservative estietate, but'there
is no data to empirically support the claim of equivalent,,
ratio for, continuous and dichotomous variables.

2.5
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. .

,Klein.and Newman further stlated, that.it.is coneptu-
, N \

ally meaningless to interpret negative R2, and since tle.'

lowAt possible R2 one can legitimately ,obtain is 0, it
!

seems that these formuli need a correction factor added
ir

,so that they are bounded on the low And by_R2 =,-,b.o and

on the high end by R2 = 1.0. It is therefore suggested

'that if one uses any of these three shrinkage estimates

that any negative R2 be interpreted as if it 'were R2 = 0.,

Ket9i, et al. (1969), suggest crass validation'

proceeires° as estimates of shrinkage instead of s ng the

more-mathematica pproa4es used.by Wherry, McNemar, and

Lord. The cross-validation procedure estimates the

shrinkage by applying the weighting coefficients from the,

original saNle to a new sample of subjects from the same

population.

4 For example, assume the weights for Model 1 in

, Example 3 re as follOws:_

Example 6:

Model 1 'Y1 10U + 6.85 X1 + 5.00X2.+ .05 X3 + E

A nela sample shQdld be taken from the same populatimi

and the variable X
6

( the predicted criterion) should be

generatedfor this sample by using the weights obtained

from the first sample. The transformation,needed would be

as follows:

e

X
6
= 6.85 * X

1
+ 5.60 *X

2
+ .05 * X

3
+ 10

26
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If the ciirrelation between X
6

(the predicted criterion)

Y
1

(the observed.-criterion) was aia_.high as the R-value

for Model II, the researcher could consider th'e i2-value

r T

k

. and

for Model 1to be stable.

scme of the diffelipcesinhe shrinkage estimates,

using. the different,procedurc amy be explainable. For

example, 'wherry'S and McNemar's.formulas-bOth.attemfre to

estimate the population R, based on the, sample, while

Lord's formula attempts to estimate the R from the sample
-.440r

to' antoher sample. , This is conceptually similar to the

Cross Validation procedure suggested by' Nelly. In deciding

which method of .estimating shrinkage is to- be used, it-is

important to consider the underlying, assumptions of each

procedure (Klein...and Newman, 1978). 'That is,' cross

validation will bend -to be,more conservative estimation.
p

Thus, it will 'tAind to -produce,larger shrinkage in R
2

. If

one is.interested in Making predictias based on one sample

to.anc.therSamOle, cro s validatt9n and Lord's approach-

tend to 'be the better estimates. 'dOwever, if .one wants
.

to estimate population .values from a sample, Wherry's and

A[cNema's411aporoac4gs would be preferable,

.

I W
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3. The third majOr concern, which has drawn a great

deal of attention, is multicollinearity, that is, a situa-

tion in which the predictor variables are nonorthogonal.

One 'of the problems that multicollinearity can cause is

large standard errors in the sampling distributions'Of the
vs,

standardized regression coefficients. These large standard
a

errors allow small changes in the relationships between
.41

2
independent variables from sample to sample to produce

large regression weight differenCeS even though their

signs tend to be stable. Therefore, terpreting regres-

sion weights can be highly misleading due to this high

variability (McNeil, et al./ 1975). Another problem

caused by multicollinearity is that a researcher is more

likely to .copmittee a Tpe II erro . (Vasen & Elmore;.

, 1575).

There, are a numbei of ways deal- with the problem '

,' of multicollinearity. Five such methods, are:

a. 'component regression
b. factor regression
c, ridge regression
d "benign neglect"
e a System of equations.

A. One method suggested in.the literature for

dealing with 'multicollinearity is component analysis
a

(Newman and Newman,'1975; Massy, 1965). Component analysis

is a pkocedure Which divides variance into.two proportions;

Unique variance,(Uq) i the oiopor.4ion of variance . 1111.1

attributed to a particular varliable when entered last into
. .

9,"-
the regression equation., CommOn variance (Cv) may be

%OP /At

28.
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conceptlially thoucipt of as the". egree of overlato of

correlated variables in th prediction of the'criterion.

Any given common variance must be independent of unique

--ind other common variance.

The calculation of unique variance for three predictor -

variables could be handled' as follows': /-

Example 71

27

Let'

Yl =. grade point' average

SAT scoreX1 =

X
2

I.Q. score

X3 = high school class work

The number of independent components'can be calculated'

by the eqbation:

2N -1

where: N = the number of predictor variables'

Thus, for this example, thenumber of independent

components would.be equal to;

2
3, -1 =,7

The-number of sets of unique variance is.equal to the
.

number of predictive mariables. For this example, there.
. ,

would be thee sets of uhiaue variance [Uq (1), Uaa(2),

Uq (3)]. The number of secona,.third, etc., order variance
. 4

can be dttermine&by2the following forMula:'
1ft

p

NC = Nj
n :11!(N-n)! N.

a

*2 9

f



v

28

where: .N = number of predictor variables

n = number of variables taken at a time

NCR. number ofn combinations of N objects,:
taking n ,number at a time,' independent
of order.

,
.S

In this example, the-number of second and third '
.

.,,--

,

otder commonalities are 'equal to the following: A.
. % .f, t,

3!NC -
n. 2! (3-2)!

-3 NCn =

The three sets of second order commonality' are

(1,2,), `C7(1,3), Cv(2-0,); and the thirdCv order co on-

3!

3! (3 -3)!
= 1

ality,var4ance is Cv(1,2,3).

These tomponents are additive and when summed
VP I

will equal the total proportion of variance accounted for

by the Ri of the full model. Mood (1969) developed a

rule for determining the Rs necessary for caluclatingo

unique and common components of variance. The rule is'

to develop products of the variables being considered.

For exaMple, if one it interested in the Uq(X1) in

this exkmple4,with three 'predictor variables (Xi, X2, X3),

'first subtract-that'variable of interest (R1) frOm one, :

multiplied -by a -1,- and multiple other variable's in the

equation.

rule: -1(1-X
1

) X2, X
3

=

)2X3 +.X1X2X3
4

Next, take the variables that are a prodlict of the

expansion. and ca,lculate-the Rs2 that is indicated by each ,

;,

. 4
30



set (separated by + and - signs)

Uq = -R2
Y-
23 4: R2' *12-3

10

In a similar manner, one of the second order and the

third order commonality v4riances wolald be'calculated as

rule:- (1-X2) X3 = ,1

l -X3 X1X3 X2X3 X1X2X3

irk -2 gim 2 Dl.:CV(1,2) in , "y.13 " y.23 - "

rule: -1(i-X11 (1-X2) (1-X3) =

-1 + Xi + x2 -x1x2 + x3 - x1x3 - X2X3 + k1x2x3

C.V.11., = R 2 - R2 - R2 +' R2 ..123y.12 y.3 y.23

(Note: When a.one is by itself in the expansion, it is'

ignored in determining which Rs2 should be calculated.]"

For further details in *
howtocalculate component

`analysis, see Vool,(1969, t971), Ker11;ger (1973) and
- l' 4( r._

andand Bolding (1975).
,

. t
Withall techniquele one must be aware of the

.4
limitations so that ,the technique` can be employes .most .

.

efficiently. The fdllowing are some 'of the limitations

one' Should "be sensitive to when using component analysis

(Newman and Newman (1975)):
..

1. As in the example, when there are three predictor

variables, there will be seven components, One can easily.

see the rather large number ofR
as

that have to be balcu-
t

31
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la'ted for just three predictor variables in the full model,

4

Houte er, in using multiple regression, the investigator

frequently `has many more than *three predictor yariables.

Therefore, the numbef.,of comwnents can easily become
. 1

impractical. to handle. s

2.. An integral part of component analysis is the

concept of 1.14. Uq is operationally defined as:'

variance accounted for by a variable tahen
'entered last in a multiple regression equa-
tiont

Therefore, the Uc depends upon and- is affected by the

variables that are already under investigation. Even

though the.Uq ipdependent, in the set of variables

for that sample, the variable is not independent.

.

3. . Ap the number of predictor variables increase,

the number,o; higher order commonality components albO'
4.%

increase.. Just as it is difficult to interpret higher
.

than thi order interactions in traditional analysis

of variance, it is also difficult to interpret higher than

third order commonalities.

4. In examining some de the formuli for calculating .

the commonality components, one becomes sensitive to the

possib.idity .that some of the components can easily account
le..

for a negative,proportion,of variance. When this

32
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situation is encountered, it becomes very difficult to

Ainte et or make conceptual sense out of the analysis.

5. ,MOod .(1971) stated an' important Iimitation one

should consider. The unique variance (Uql; accounted for by
. .

aft independent variable Can change radically from situation
I

1
.

to situation. However, the
'T
Uq'attributed to a fhctor that

,

7
the variable is a part of is not likely to change. There.

f9r4, Mood_ suggests that one should grQup the variables

4 0
based on the underlying concept they seem to be measuring.

m r

This'would produce a more stable estimate. This group

process will also have.a.side.benefit of re nig-the

total number of predictor variables which will make the

component analy4is much more manageable. However, if one.

-uses the procedure suggested by Mood, the weighting of

each variable'becomes a problem., Do, the factors account

for the same 100 percent of the proportion of variance

accounted for when each variable is used separately?J If

not, one is loosing possibly' significant information.

Finaloly, it is,p.fficult to decide on which variables should

go together. Quite often, variables that'. look as if they

are measuring the smite underlying construct,. are not.

III., B. .Another method by which a researcher can deal

with the problems caused by nonorthogonal pred ctor

variables is factor regression.

Factor multiple regression is a procedure that may.

circumvent some of the problems associated with component'

regression (Massy (1965), Duff, Houston and Bloom (1971),

33
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Gonnett, Houston and Shaw (1072) , ;Newman:41972)). ±t is'

amethod thgeenables one to empirically, determine the

.fact9rs with which' the,4iables Ware associated:

The first step in the procedure is 'to orthogonally

factor" a set, of independent variables into a nXn factor
, -

.matrix. -Connettf et al. (1972) suggesti thit this factbr

matrix may be rotated, but only with a rotation that

preerves the orthogonality of the factors.' The next

step is to standardize the independent variables. This

matrix of standardized variables is Oostmultiplied by the

matrix to obtain the factor varkables. Because these

lyetor variables are orthogonal, the beta weights of these"'

variables, when used in a regression equation, will tend

to be stable.' Therefore, this procedure allows greater

.interpretation of the beta weightsto be made. 11

An additional advantage.Of using factor scores is

that when a matrix is factored much of the efror variance
1

tends to be distriblited in the factors that account for

the'least variance. Therefore, one of, the possible,by-
,_ 4(

products of using factor scores which account for mot

.. trace variance as predictors is the*likellhood'of in- '

creasing reliability; therefore, decreasing shrinkage

(Newman, 1972).

If one is interested in improving the multiple

regression equation by using factor techniques, there is

only one way this can be done. That is,.the number of

factors used must be less than the number of origirial

. 34
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variables. This will increase the df and also possibly

decrease shrinkage-estimates. Because'ol this, Some

' researchers have used only the,feW tactorg" that account

for the "greatest" amount of the factored trace. However,\

when this is done, one may be lo,ing information that

can dccount fot criterion variance by eliminating a

factor that accounts for very little trac of the
iN\

-eactored matrix but 's 'highly correl ed with the

criterion scores.

Using only the factors that account3for most of the

trace should be avoided when the prdictor variables that

are being factored are likely to be highly reliable. Some

examples of such variables are: height,' weight, relon,

sex, income, age, etc. `finder these conditions, a variable

that accounts for little of the trace variance may be

a good and highly reliable predictor 6f criterion

variance.

niWhen using factor regression o should be aware of

when it can be most appropriately used. It is the

authors' opinion that the factor regression approach may

be more appropriate than comp ent,analysis when one is

interested in determining e unique variance accounted

_for, especially when the number of predictor variables is

relatively large and here are a minimuni of ten subjects

,for every variable.. However: if one is interested in the

;commonality, the factor regression procedure is not

approptiate. cage, if one 4as a -large number.of



.f.
Nariables'and subjects, it is lossible to use factor

anilys,is with oblique tatilon. This procedure will

condense the large number,pf variables into factors

which can be used.as a new det of pi-edictor.krariables.

Since *these factors may be oblique (correlated), one may

then wish to do a component analysis which will yield
it

nique and common variance attributedestimates of thleSu

to the factors. Obviously, the oblique solutioni lack

many of the desirable characteristics which make the

orthogonal solution easg.er to interpret. However, there

are times when a",researcher Itav be interested in the

common proportiOn'of variance attributed to factors

which are theoretically and empirically related.

III. C,' A method called ridge regression has been

proposed' as ossible means by which a res a cher can

I
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obtain stable regre Sion coefficients (Hoerl (1962), Hoerl

and Kehnard (1970 (a), 1970 (b)), Marquardt. and Snee t
a.4

(1975)). The ridge regreqsialproCedure requires that

a constant repeatedly adc4:1 to the diagonal of the

1X X matrix (where the X variables are scaled solthat

R1X has the form of a correlationomatriA) before the

matrix is inverted. That is, consider the standard model

for mult .linear regression

Y = 1 + E

X = nXp matrix .of p predictor variables at each
n data points

Y = vector of obseiRed.values

36
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4 a

8 = pXl yectoi of population values of para-
meteis'

e =,nx1 vector of experithental errors CE (e) = 0)

S .= (klx)-1(x1Y) -

XIX = the; product of transposed X and X

X/Y, the product of transposed X and Y

a = least'Squares estimator of $

Ridge regression, as described in more detail it

Hoerl (1962) and Hoerl and Kennard (1970a, 1970b) is an

estimation procedure baed upon

B = (X/X + KI) -1 (X/Y)

I = identity matrix

K = 0 K < 1

fir = ridge estimator. of

where K is d conststant number added to the-identity

matrix I. researcher can determine the appropriate--

K value, i.e., the K value that stabilizea the regression

coefficients by examining the Ridge Trace. The Ridge

Trace is_a plot of the coefficient weights vs. thd

K values. A hypothetical diagram of the Ridge Trade is

en in Figure 2 for the, variables X1, X2, and X3.

37
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FIGURE '2

RIDGE TRACE
(i

.00,...01 .02 .03 .04 .05 .06

At the K-value where the ridge traces for the variables

-appear to become approximdtely parallel

the regression coefficients beComestable. In
S

Figure 2 the ridge traces become aPproximately'arallel r

where K = ,04. Thus, the researcher would use the

regression coefficients that correspond to that po nt.

The rese archer will find that for models with low

R2 values require larger values of K than do models with

high R2 values. Also, increasing K indefinftwly will

ultimately force all coefficients to zero, iput it is not,

dficommin to see a coefficient (usually after an initial

sign change)to increase in absolute value as K increases

(Marquardt and Snee, 1975).
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Before this procedure is used, however, a researcher

should be aware of the differences between the coeff4,Cients

produced by the least squares solution and coefficients

produced by, ridge .regression. The least squares solutiorp.

yields coefficients that minimize the residual sum of

squares. The expected value of the coefficients. are

unbias (E (8) = 8) and have the minimum variance "aMong all

linear unbiased estimators (see Figure a).

Inridge regression, the variance of the coefficients

decreases (see Figure 3b) as the value for K increases.

However, the bias of this -estimator ingresses (E (8) 8)

as the valiie of K increases. What the researcher is doing

with ridge regression isaccepting a little bias in the

expected value of the coefficient in return for a lower

mean square error [MSE = variance of the coefficient +

(bias)2]. In fact, the objective of ridge regzession-N

to find a value of K which gilres a set of coefficients

with smaller MSE than the one produced by the least

squares solution. As the K'Value increases, the residual

sum of squares willincrease. But remember, it is not the

objective of ridge regression to obtain the "bed.t fit" for

the sample data but rather to'develop stable coefficients'

(Marquardt, and, Snee, 1975). , .
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FIGU R'E" 3a

(Marquardt and Snap, 1975)

VARrANCE AND BIAS IN AN ESTIMATOR

FIGURE

Zero Bias

,Large-3.1arianCe
.

E (a)

rI

K.

-w.

4
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.A6 ill) Non-zero Bias

Small N.Wiance

A

a

The preceding discussion'on the di4ferences between

I

the least eqdares solution and ridge' regression 'dbes point

out one limitation to Using 'ridge regression. Because 'the
..-

espedted values of the cod'fficient is 'bias, hypothesis'

testing would.be questionable. Thus, if the researcher

is attempting to test hypotheses, 1.idge regrespion may not

40
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4 be thecorrect_meehod for to use in' handle the problembf

ofmultiC11ingarity (unstable coefficients) .

, D. A fourth possible method foi. dealing,

with the problem ,of mUrticollinearity is not todeal
with ± The argument for thkpolfion can be11

*>

demonstrated by the following example:
, ...

Example 8:

Y
1 ='post st,scorg.

X1 = I.Q. score ;,'

2
X = X X
1 1 **

'

E.1,2-3 = error for each. subject
, .- 4

.. .

4.,
u ..unit vector , ,

r a l'
a
o

. .a2 = reptesaiolotoefficient weights

VW&

V

Model 1

NIALA

Model 3'

.

Yi

Y. =aU+AX + & + E1 0 1 1 £2 1 <a.

Y1

= a.
0
U +,a

1
X
1
+ E

= a + a
2x2 E0. .

r

*

k

a2

.

R
1

,11- R2 = 0, ' .

2 el

e
e . .

*
~Assume that the variable A is related to variable

-

.-

In the me.nner indicated in Figuke 4.
'.

-7. . F,I GiRE 4*

. THE RELATIONSHIP.BETWEK
.

X1 AND Yi

406

xi

*Note: `Exam in Figiire'.4 waCgiven by John Pohlman at the 1977 A.E.Itk*
Convention bp. support the argument' ttlat:forwirst Stepwise Regres;ion..,
may be eriminaring surpressor, variables.
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s
v

..

.

IThe. R1 value for Model 1 would be ,equal Ito one.. "HqM-
.

2 e; .ever, the R2 value for Model 2would161016qual to zero fot

the relationship between X, and Y1., Also, Model 3 would
,

rve an R2'
value equal to zero-for the relationship between'

x2
1
and Y,.

rode 1 is attempting to account for the variance

in Y1 by using variables Xi and

note that the' cdrvelathoh be

X?... It is important to,
.

Xand.X,
a

is31j.gh.:riud: is;
,

r

()del 1.: In Model 24phd

, a
Model 3, the multicol.linearity is. eitpinated-by the

. .

ticollinearity,is prevent i

. tradd..tdr6ilalprOogdUre of eliminating one oethe correlated

independent variables- What has ;lso been,eliiihated, how-f

0 iever, in~both Model: 2. and godel 1-.is 'a,surpressor variablee.
, ,_ )

) .
- ..

(Sprpressor Avariabl 1es have also been called in, intervening
. .

.

variable or a sleeper variable). s461.
-,.

;
.

. OA sutoressok variable.is present when a variable'.

O has a ldk correlation itith the criterion and is-kghly
, . 4. ,.

.
.

r

'correlated with some jther'llariable in th9001rediottive ,

0 .,
... . 0

a ' " i

equation.
11,
Inaddition, Aim this variable ii plac&I'in- :

tligirredictive equation along with the variable mith which

_ .

:4. ..,
\ ... ,

A)

It'is 'highly correlated, the R2'of th
. ,

will increasg signif;cantly; gl;Ch-as rpressoe variable ,

I
predictive. aqUatiop -*

2
is ageserft in Model 1r When both 5C3. d Xi,' Variablts,which,.

,

are highly correlated, Ore used together as they are in
4'..

Model 1, the 2-value of Model 1 increases;pignIticantry

lues of Model 2.1ind Model 3, The point-is -

lo

It

over the jt

),.

0
,

4

9 ,

1

S

\'

40A4
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-that the researcher does not want to eliminate a

surpressOr variable.

. v
The :hypothesis t6 be/tested is foil()

. '111: Theis
4a.significant

di ,fference between.
., the acevement scores for the control' group.

and the experimental group over and above
the differences due to reaction time scores.

k

Cpnsider'the following example:

Ex'ample 8: .

Let,X1 =achievementscores

X
1
= treatment group

X2 = contra). group

X3 t= reaction time

.40

41

Assume that X
1

is cberelated ith X3' and X is also

correlated with X
3'

TSe models below:

/the hypothesis:

Model l's
Y1 = a + a1X1 + a2X2 + a3

3
+ E

0

lestriCtions:

Model 2
Y- = aoU + a3 X3 + E

6

= a2

",

.476147,

' 1

43'
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It is important to nOtt, however, that the

,researcher must select his variables'carefully. That is,

4 his hypothesisshOuld probably not include X3 if the

relationships between X3 andthe groups (X1 and X2) are

not found in other research inthe discipline or are illogical.

If these relationShips are not usually found or are unstable,
.,

the results of the hypotheses tests may vary from sample

to sample.
At 1

0
'The researther should also be aware that he is more

likely to commit-a Type IT error when the relationship

'between X3 and the voups'it not consistent across the

conti*uum of Y. That is; ere is an interaction between

groups and the-reaction-lim Iry fact; when there is gn
, .

interaction between groups and reaction tile, one c:. the- ,... .

11-"Nconditions of covariance has been violated (homogenuity
.

.
.-,

t
-

.N
.

of regression) a) herepre, analysis or covariance,is no

longer appropriate. 1
1, I

tv'r
4

4
,

III. E* Soper (1976) suggested in a review of a

I

.study- on the Use of ,programmed instruction in conomics

that, a of ions should 1?e'establis d'in order
t___ ..

.
.

to ccrre the nonorthpgonality ofthe i dependent,

4 variables. For, exaMet, consider the folIbwifig hypothesis

. . ,

4 ,A. 4 ,

ill: There is a significantlitference between
the'control'grouio and .experimentaL
group...in potttest scores over' andabove

1 the differenee,due to scholastic ability.,

4

f4
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0
Y
1
= posttest score

X
1
.= pretest score,

X2 =
(

SAT score (Scholastic Aptitude Test score)(

X
3
= experimental groUp

X
4: = control, group

a
o

. . .a = regression coeffibient weights

E1 . . .E = the 'error terms (Y - Y) for the difteient models

The traditional method of anaIywing the data would be

to test Model i1 against Model 2.

Model 1

Model 2
X
1
= a U + a1X1 +a2X2 +.E

2-,0

N

Y = a -U + alX1 + a
2 3 3
X + a'X' + a

4
X + E1 o 1

a3 = a4

If X anlp
4

are correlated with X
1

(SAT scores),

'Soper (19 ) would suggest that a system of equations,

or in, this case on ,equation, would need. to be speci,fied.

The needed equation would be as follows:

1J
Model 3___,___

X2 = aoU + a3X3 + a4X4 + E3

T

The value for E
3 would represdnt the amount of

variation in SAT scores thatare unrelated to group

membership.



1'

b

Next,
"E

wouid be usled as an independent variables' in

-. Model 4, andiMode1,4yould be tested against Model. 5.

Model 4 and-Model 5 are as follows:

Mods]. 4

=-.a0U +.aiXi + a3X3 * a4X4 + a5E3 + E
4

Restriction: a = a
3 4

Model 5
Yl = aoU + a + a

5
t
3

+ E
5

However, the researcher has not tasted his original

question of interest .Type VI error) which was: Is 'there'

a siAnifiCant differente between the control gioup and the
. . .

experimental group on posttest scores, over and above the

differences due to scholastic ability? What he hap, in

fact,'tested is the hypothesis: There is a significant

difference between the control group and the experimental
ry

. .

group on'pftosttest scores over and above the differences in
1

I:Q. and SAT scores. unrelated to group membership. This, is

a different question!

Also, one mustibe aware that correcting .numerous

variables, for multicollinearity.tends to make the,interpre7

tation of Ithe results very, difficult'. ''The researcher May

tiotbe able to practically explain,what a significant

. F-v aluer indicates."

For exagple, "assume two variables, I,Q. and sex,

were correlated and the#researCher set up a syitem 'Of

equatiOns which included the following equation:

4 6'
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. ,

I.Q. = aoU = a
1

sex + E

45

The question is, How do we -interpret Z6? It is whatever

I.Q.'is after sex has been removed from it. Is It still

I.Qi?' Most probably riot:

4

In condi ion, the authors hope that this presentation

which dealt with some of the currently !identified pckblems

ip conducting research, speciffically when using regression,

has sensitized the applied researcher to these-problems

and alternative solutions. The authors feel that no one

paper can do justice to all the topics covered. However, we

feel that this paper can be used as a guide to where one

may go for more detailed information.

It should be kept in mind that 'the authors felt the,

regression approach is probably the most flexible and useful

single tool

other tool,

sensitivity

of asking a

available to the researcher. However, like any

it is only as good as the insights an111

of the user. 10 not commit the classical error

researsh'question and testing it with a statis-

ticalmodel that is incapable of,reflecting that question,

(Newman, et al.,.1967).
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